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Abstract 

 The effect of zirconia phase on the activity and selectivity of Cu/ZrO2 for the 

hydrogenation of CO has been investigated.  Relatively pure t-ZrO2 and m-ZrO2 were 

prepared with high surface areas (~ 145 m2/g).  Copper was then deposited onto the 

surface of these materials by either incipient-wetness impregnation or deposition-

precipitation.  For a fixed Cu surface area, Cu/m-ZrO2 was tenfold more active for 

methanol synthesis than Cu/t-ZrO2 from a feed of 3/1 H2/CO at 3.0 MPa and 

temperatures between 473 and 523 K.  Cu/m-ZrO2 also exhibited a higher selectivity to 

methanol.  Increasing the Cu surface area on m-ZrO2 resulted in further improvement in 

activity with minimal change in selectivity.  Methanol productivity increased linearly for 

both Cu/t-ZrO2 and Cu/m-ZrO2 with increasing Cu surface area.  The difference in 

inherent activity of each phase paralleled the stronger and larger CO adsorption capacity 

of the Cu/m-ZrO2 as quantified by CO-TPD.  The higher CO adsorption capacity of 

Cu/m-ZrO2 is attributed to the presence of a high concentration of anionic vacancies on 

the surface of m-ZrO2.  Such vacancies expose cus-Zr4+ cations, which act as Lewis acid 

centers and enhance the Brønsted acidity of adjacent Zr-OH groups.  The presence of 

cus-Zr4+ sites and adjacent Brønsted acidic Zr-OH groups contributes to the adsorption of 

CO as HCOO-Zr groups, which are the initial precursors to methanol. 
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Introduction 

Zirconia-supported copper exhibits high activity for the synthesis of methanol via 

hydrogenation of either CO or CO2, as well as a broad range of mixtures of CO and CO2 

[1-11].  The latter characteristic is of considerable interest, since conventional 

Cu/ZnO/Al2O3 catalysts operate best over a narrow range of CO2/CO ratios and in the 

absence of traces of H2O are virtually inactive for the hydrogenation of pure CO [12].  

Mechanistic studies of methanol synthesis over Cu/ZrO2 and ZrO2-promoted Cu/SiO2 

have shown that Cu and ZrO2 are involved in the synthesis of methanol from CO or CO2 

and H2 [9].  During CO hydrogenation, CO adsorbs on cus-Zr4+ Lewis acid sites and 

interacts with surface hydroxyl groups to generate formate species.  These species then 

undergo sequential hydrogenation to form methoxide species, which are eliminated 

reductively to form methanol.  Cu is more effective at dissociating molecular H2 than 

ZrO2 [5], and, therefore, provides atomic hydrogen to the surface of ZrO2 via spillover.  

This spillover process is facilitated by hydroxyl groups on the ZrO2 surface [13].  Similar 

processes take place during the hydrogenation of CO2, but in this case bicarbonate 

species are produced initially by the reaction of CO2 with hydroxyl groups on the surface 

of ZrO2, and these species then undergo hydrogenation to form methanol and water. 

 Since zirconia participates in the hydrogenation of CO over Cu/ZrO2, the structure 

of the oxide lattice is expected to influence the performance of such catalysts.  Previous 

studies have shown that the tetragonal (t-ZrO2) and monoclinic (m-ZrO2) modifications 

of ZrO2 possess different acid/base properties [14-18] and surface hydroxyl group 

concentrations [17, 19].  These characteristics affect the overall uptake of CO and the 

relative binding of adsorbed species.  In a preliminary study of the effects of ZrO2 phase 
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on the synthesis of methanol, Jung and Bell reported a 7.5 fold higher activity for CO 

hydrogenation over 5% Cu/m-ZrO2 than 5% Cu/t-ZrO2, and for CO2 hydrogenation, the 

activity was 4.5 times higher on the former catalyst [11].  The effects of zirconia phase 

have also been noted in studies of isosynthesis of isobutene and higher alcohols [20, 21] 

and butane isomerization [22].  Given the role of Cu as a source of hydrogen atoms, the 

surface area of Cu is also expected to influence catalytic activity of CO hydrogenation.  

While previous studies have shown a linear relation between Cu surface area and 

methanol synthesis activity for CO2-containing feeds [23-25], there is a need to 

understand how this parameter affects the rate of methanol formation in the absence of 

CO2. 

 The objective of the present investigation was to determine the effects of ZrO2 

phase on the activity and selectivity of ZrO2-supported Cu for methanol synthesis from 

CO and H2.  The influence of Cu deposition method and the surface area of the deposited 

Cu were also examined.  The phase of the supports was identified by XRD and Raman 

spectroscopy, and N2O titration was used to determine the surface area of the dispersed 

Cu.  The CO chemisorption capacity of the catalyst was probed by temperature-

programmed desorption spectroscopy, and the nature of the hydroxyl groups present on 

ZrO2 was examined by infrared spectroscopy.  This paper constitutes the first of a two-

part series and is devoted to defining and interpreting the effects of ZrO2 phase and Cu 

surface area on the steady-state activity and selectivity of Cu/ZrO2 catalysts for methanol 

synthesis from H2 and CO.  The second part of this series examines of the dynamics of 

methanol synthesis using in situ infrared spectroscopy and provides at gaining additional 
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insight into the manner by which ZrO2 phase and Cu surface area affect the rates of 

elementary processes involved in the hydrogenation of CO to methanol. 

 
Experimental 

Catalyst Preparation 

 Details of the synthesis of monoclinic and tetragonal zirconia used for this study 

have been described previously [26].  A low-pH, hydrous ZrO2 (ZrO2 (LpH)) was 

prepared by boiling a 0.5 M solution of zirconyl chloride (ZrOCl2·8H2O, 99.99%, 

Aldrich) under reflux at 378 K for 240 h.  The final solution had a pH < 1.  NH4OH was 

added dropwise to agglomerate the resulting fine particles to facilitate their filtration.  

The recovered precipitate was washed and redispersed in deionized water several times to 

remove residual chlorine.  AgNO3 was used to test the filtrate for any remaining Cl 

anions.  The material was then dried in air at 383 K overnight prior to calcination.  A 

high-pH, hydrous ZrO2 (ZrO2 (HpH)) was prepared by dropwise addition of a 1 M 

ammonium hydroxide solution to a 0.5 M solution of zirconyl chloride at a pH of 10.  

The resulting material was heated in the mother liquor at 378 K under reflux for 240 h 

while maintaining the pH at 10.  The precipitated material was washed and dried in a 

fashion similar to that used for the low-pH sample.  Each sample was calcined in dry air 

flowing at 100 cm3/min.  The temperature was ramped from room temperature at a rate of 

2 K/min to the final temperature, which was maintained for 3 h. 

 Cu/ZrO2 catalysts were prepared by both incipient-wetness impregnation and 

deposition-precipitation.  Incipient-wetness impregnation was conducted by dissolving 

the desired amount of copper nitrate (Cu(NO3)2·6H2O, 99.999% metals basis, Alfa Aesar) 

in a volume of deionized water sufficient to fill the pore volume of the ZrO2 support.  
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This solution was then mixed with the ZrO2 and left to dry under mild heating (∼ 313 K) 

for > 120 h, before drying at 383 K overnight.  Samples prepared in this fashion are 

designated with the suffix (I).  Deposition-precipitation was carried out by immersing the 

ZrO2 support in an aqueous solution of copper nitrate that was stirred vigorously [27].  

The ratio of support to solution was 0.5 g/60 cm3.  The pH was slowly raised by injecting 

a solution of NaOH using a motor driven syringe inserted through a septum seal located 

near the bottom of the preparation vessel.  The rate of base addition was set to 1 OH-

/Cu2+·hr for each Cu loading.  The addition of base was ceased once the pH of the 

solution reached approximately 7.3.  Samples prepared in this fashion are designated with 

the suffix (DP).           

 Prior to testing or characterization, each catalyst sample (0.15 g) was calcined in a 

10% O2/He mixture flowing at 60 cm3/min. The sample was heated from room 

temperature to 573 K at 0.5 K/min and then maintained at 573 K for 2 h.  The sample was 

then cooled to 323 K, swept with He, and then reduced in a 10% H2/He mixture flowing 

at the rate of 60 cm3/min while the temperature was increased at the rate of 2 K/min up to 

573 K.  The flow of 10% H2/He was maintained at 573 K for 1 h prior to switching to a 

flow of 100% H2 for an additional 1 h. 

Catalyst Characterization   

The crystallographic phase of each material was determined by both X-ray 

diffraction and Raman spectroscopy.  XRD patterns were obtained with a Siemens D5000 

diffractometer, which uses Cu-Kα radiation and a graphite monochrometer.  Scans were 

made in the 2θ range of 20 to 45° with a step size of 0.02° and a time/step of 11 s.  The 
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volume fraction of the monoclinic phase, Vm, of each sample was calculated using the 

following relationships [28]: 

Vm = 1.311Xm/(1 + 0.311Xm) 

Xm = (Im(111) + Im(11ī))/(Im(111) + Im(11ī) + It(111)) 

where Im(111) and Im(11ī) are the line intensities of the (111) and (11ī) peaks for m-ZrO2 

and It(111) is the intensity of the (111) peak for t-ZrO2.  Raman spectra were recorded 

with a HoloLab 5000 Raman spectrometer (Kaiser Optical) at room temperature.  The 

stimulating light source is a Nd:YAG laser, the output of which is frequency doubled to 

532 nm.  Laser power at the sample was approximately 20 mW. 

The BET surface area of each ZrO2 material was determined using an Autosorb 

gas adsorption system with nitrogen adsorption/desorption isotherms.  Prior to each 

analysis, samples were dried at 393 K under vacuum for > 2 h.  BET surface areas were 

calculated using a 5-point isotherm. 

Cu surface areas were quantified using N2O titrations followed by H2-TPR to 

account for any potential bulk oxidation effects [29].  The sample (0.15 g) was calcined 

(10% O2/He) and reduced (2% H2/He) in a flow microreactor heated by a furnace.  

Temperature was measured using a thermocouple placed inside the catalyst bed from 

above.  Reduced samples were cooled to 333 K and then exposed to 1% N2O/He for 

varying times, followed by rapid cooling to 298 K in He.  Neither of the ZrO2 supports 

exhibited a significant interaction with N2O at this temperature.  H2-TPR was then 

performed by ramping the temperature up to 673 K at a ramp rate of 20 K/min under a 

flow of 0.2 % H2/He at a rate of 60 cm3/min.  The amount of H2 consumed was used to 
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calculate the amount of oxygen deposited after the N2O titration.  A value of 1.46×1019 

Cu atoms/m2 and a stoichiometry of 2 Cu/H2 was utilized [30].  No significant bulk 

oxidation was observed for any of the catalyst samples. 

The concentration of exchangeable hydrogen on each sample was quantified using 

H/D exchange.  Fully reduced samples were purged with He at 298 K for 30 min 

followed by ramping the temperature at 20 K/min from 298 K to 623 K in 40 cm3/min of 

D2.  Both HD and H2 evolution were monitored using a mass spectrometer, but only HD 

generation was observed.  For each sample, exchange was complete by ∼ 523 K. 

Transmission infrared spectroscopy experiments were conducted using a low dead 

volume infrared cell with CaF2 windows [31].   In an effort to remove any residual 

surface species prior to testing, each sample was calcined in a 10% O2/He mixture 

flowing at 60 cm3/min.  The sample was heated from room temperature to 523 K at 2 

K/min and then maintained at 523 K for 8 h.  The sample was then cooled to 323 K, 

swept with He, and then reduced in a 10% H2/He mixture flowing at the rate of 60 

cm3/min while the temperature was increased at the rate of 2 K/min up to 523 K.  The 

flow of 10% H2/He was maintained at 523 K for 1 h prior to switching to a flow of 100% 

H2 for an additional 1-3 h.  The sample was then flushed with He for 1 h prior to 

spectrum collection. 

H2-TPR studies were conducted using 0.15 g of a calcined sample purged with He 

at 298 K for 30 min.  The flow was then switched to 2% H2/He at a flow rate of 60 

cm3/min and then ramped from 298 K to 673 K while monitoring H2 consumption using a 

mass spectrometer. 
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CO adsorption of the catalysts was determined using temperature-programmed 

desorption (TPD).  The sample was first calcined and reduced after which it was cooled 

to 523 K and flushed with He for 30 min.  4.0% CO/He was then flowed over the catalyst 

at a flow rate of 60 cm3/min for 20 min.  The sample was then cooled to 298 K in 4.0% 

CO/He before being purged with He to remove any weakly adsorbed species.  Desorption 

studies were conducted by ramping temperature at 20 K/min in He from 298 K to 773 K 

while monitoring the desorbing gas using a mass spectrometer. 

Catalyst Testing 

    Activity and selectivity measurements for CO hydrogenation were carried out in 

a continuous flow, fixed-bed reactor.  The stainless steel reactor tube had an internal 

fused glass lining with a 4.0 mm ID (SGE).  Temperature was measured with a 

thermocouple inserted in the catalyst bed using a metal sheath.  Reactant gas mixtures of 

CO (99.99%) and 99% H2/Ar (99.99%) were further purified with appropriate traps to 

remove H2O, CO2, and O2.  CO was passed through a trap filled with glass bead and 

heated to 673 K in order to decompose iron carbonyl formed in the CO cylinder.  Flow 

rates were controlled using high-pressure, mass-flow controllers (Brooks) and total 

pressure was regulated using a back-pressure regulator (Go).  The exit line from the 

reactor to the gas-sampling valve was heated to prevent condensation of any volatile 

products.  Product gas mixtures were analyzed using a gas chromatograph equipped with 

both a TCD and a FID (HP 6890). 

 Reactions were carried out with 0.15 g of catalyst.  The feed was a 3/1 H2/CO 

mixture flowing at a rate of 60 cm3/min STP.  The total pressure maintained in the reactor 

was 3.0 MPa.  The composition of the products was analyzed after 2 h on stream at a 
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given temperature.  Temperature was then raised to the next temperature at a rate of 2 

K/min and then maintained for an additional 2 h.  Conversion and selectivity were 

determined on the basis of CO, the limiting reactant. 

 

Results 

Characterization of ZrO2 Supports 

Given the difference in preparation of the high and low pH forms of ZrO2, the 

product from each synthetic approach was calcined at a different temperature in order to 

obtain materials with essentially equivalent surface areas.  The calcination temperature 

and measured surface area for each support are given in Table 1.  In order to achieve 

surface areas of ~ 145 m2/g, it was necessary to calcine ZrO2(HpH) at a higher 

temperature than ZrO2(LpH).  XRD patterns of these materials are shown in Figure 1.  

The bulk monoclinic volume fraction (Vm) of the ZrO2(LpH) is > 99% and < 3 % for 

ZrO2(HpH).   

The Raman spectra of the zirconia supports are presented in Figure 2.  ZrO2(HpH) 

exhibits multiple peaks at 157 cm-1, 280 cm-1, 321 cm-1, 472 cm-1, and 646 cm-1.  The 

position of these peaks and the higher intensity of the peak at 646 cm-1 compared to that 

of 472 cm-1 are all characteristic of t-ZrO2 [32-34].  ZrO2(LpH) exhibits peaks at 182 cm-

1, 333 cm-1, 377 cm-1, 475 cm-1, 559 cm-1, and 623 cm-1, which are characteristic of m-

ZrO2 [32-34].  These observations are consistent with those of XRD analysis and confirm 

that ZrO2(HpH) and ZrO2(LpH) are relatively pure samples of t-ZrO2 and m-ZrO2, 

respectively.  For ease of reference, ZrO2(HpH) will be referred to as t-ZrO2 and 

ZrO2(LpH) will be referred to as m-ZrO2. 
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Characterization of 1.2% Cu/t-ZrO2 and 1.2% Cu/m-ZrO2  

A loading of 1.2 wt% Cu was deposited onto each support in order to identify the 

effects of support morphology and Cu deposition procedure on the Cu dispersion and, 

ultimately, on the methanol synthesis activity of Cu/ZrO2.  The Cu surface area and 

associated dispersion for each sample are given in Table 2.  In all cases, deposition-

precipitation generates a larger copper surface area than incipient-wetness impregnation.  

In addition, for a given Cu-deposition technique, the Cu dispersion is higher on t-ZrO2 

than on m-ZrO2.  This result can be attributed to the higher point-of-zero-charge (PZC) 

(8.5 vs. 6.6-6.7) and charge density of the monoclinic polymorph [19].  The larger net 

positive charge at the surface of m-ZrO2 leads to a weaker interaction between the 

support and the dissolved Cu cations, which contributes to a lower dispersion.  

The surface concentration of exchangeable hydrogen, quantified by H/D 

exchange, for each sample is also listed in Table 2.  Previous studies have shown that this 

quantity is indicative of the concentration of hydroxyl groups on the catalyst surface [13, 

35].  The concentration of OH groups ranges from 6.3-10.9 µmol/m2, with the value 

being about 50% higher on Cu/m-ZrO2 than Cu/t-ZrO2.  A similar trend has been 

reported for pure ZrO2 [26]. 

The infrared spectra of the O-H stretching region for t-ZrO2 and m-ZrO2 are 

shown in Fig. 3.  Spectra were referenced to the empty cell in He.  Each sample exhibits 

two types of isolated hydroxyl groups in the region > 3600 cm-1.  For t-ZrO2 these peaks 

occur at 3660 and 3738 cm-1 and for m-ZrO2 the peaks occur at 3668 and 3729 cm-1.  

While several authors have noted the presence of a pair of OH bands on t-ZrO2 and m-

ZrO2 [36-38], their exact position has been found to depend on the degree of surface 
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dehydroxylation.  Of notable interest is the work of Erkelens et al. [36], who observed 

OH bands very similar to those reported here for samples of t-ZrO2 and m-ZrO2 prepared 

and calcined in a manner very similar to that used here.  Hydroxyl group species on the 

surface of ZrO2 are commonly assigned based on the number of coordinating Zr cations, 

with the higher frequency species representing terminal groups and the lower frequency 

species representing either bi- or tri- bridging groups [37, 39].  Recent theoretical studies 

of the surfaces of both ZrO2 polymorphs also lead to the conclusion that a combination of 

terminal and both bi- and tribridged OH groups should be present [40-43].  Under the 

conditions of this study, m-ZrO2 exhibits a higher relative concentration of the lower 

frequency hydroxyl group species.        

The H2-TPR profile for each catalyst is given in Figure 4.  All of the samples of 

1.2 wt% Cu exhibit peaks between 473K and 573 K.  Previous authors have observed 

similar reduction peaks for Cu/ZrO2 and have attributed the lower temperature peaks to 

the reduction of highly dispersed CuO or Cu2+ ions in an octahedral environment, 

whereas the high-temperature peak at 573 K has been attributed to the reduction of bulk 

CuO [44, 45].  Even though the dispersion of Cu on m-ZrO2 is lower than that on t-ZrO2, 

it reduces at a significantly lower temperature.  Reduction is also more facile for Cu 

deposited by deposition-precipitation.  For each catalyst, though, the amount of H2 

consumed was slightly greater than the value corresponding to the complete reduction of 

CuO species (H2/CuO ~ 1.0-1.1).  Therefore, Cu should exist predominantly as Cu0 

irrespective of the ZrO2 phase or method of Cu deposition sample during reaction, 

following pre-reduction up to 573 K.  Previous investigators have noted H2 consumption 
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peaks associated with the reduction of ZrO2 at T > 673 K [44, 46].  Such peaks were not 

observed in the present study because the reduction temperature was limited to ≤ 673 K. 

TPD spectra taken after the adsorption of CO at 523 K are shown in Figure 5 for 

1.2 wt% Cu/t-ZrO2 (DP) and 1.2 wt% Cu/m-ZrO2 (DP) (the corresponding samples for 

which Cu was deposited by impregnation are not shown).  Each material desorbed the 

adsorbed CO as both CO and CO2.  The desorption of CO and CO2 has previously been 

ascribed to the decomposition of formate and carbonate species, respectively [17].  The 

significantly greater CO adsorption capacity of Cu/m-ZrO2 is quite apparent.  It is also 

noted that CO and CO2 desorption occur at higher temperatures for m-ZrO2, indicating a 

stronger binding of adsorbed CO to the surface of this material.  Based on total carbon 

adsorption, the Cu-containing materials exhibited CO adsorption capacities similar to 

those reported for t-ZrO2 and m-ZrO2 free of Cu [17].  The calculated desorption 

quantities and related peak maxima temperatures for all of the samples are presented in 

Table 3.  In general, the impregnated materials exhibit desorption spectra that are similar 

to those for the corresponding materials prepared by deposition-precipitation, but with 

lower overall adsorption capacities. 

To establish the form in which CO adsorbs on Cu/ZrO2, in-situ infrared spectra 

were taken during CO adsorption on the reduced catalysts.  Figure 6 shows a sequence of 

spectra obtained after exposing 1.2 wt% Cu/t-ZrO2 (DP) and 1.2 wt% Cu/m-ZrO2 (DP) to 

a flow containing 0.05 MPa CO and 0.45 MPa He at 523 K.  The adsorption intensities 

for bidentate formate species on ZrO2 (1566, 1386, and 1366 cm-1) [9, 17, 47-53] are 

large for each sample, but are significantly greater for the m-ZrO2 catalyst, consistent 

with the higher adsorption capacity measured by TPD.  The evolution of these bands 
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illustrates that CO adsorption is incomplete after 20 min and that the dynamics of formate 

formation are slower on 1.2 wt% Cu/t-ZrO2.  Therefore, the large adsorption capacity 

differences measured with TPD are to some extent a reflection of the more rapid 

generation of formate species on the m-ZrO2 surface. 

Catalytic Performance of Low Weight Loaded Cu/t-ZrO2 and Cu/m-ZrO2  

The effects of reaction temperature on the activity and selectivity of 1.2 wt% 

Cu/ZrO2 catalysts are presented in Figure 7.  The conversion of CO to methanol 

increased over the temperature range 473-523 K and was accompanied by a decrease in 

methanol selectivity.  The only major byproduct observed was methane.  The reported 

conversions are far below the equilibrium values for the given temperatures, which 

means that the observed rate of methanol formation is not influenced significantly by 

methanol decomposition.  Both m-ZrO2 supported catalysts exhibited significantly higher 

conversions to methanol than the t-ZrO2 supported catalysts.  For example, the methanol 

productivity of 1.2 wt% Cu/m-ZrO2 (DP) was approximately eight times higher than that 

of 1.2 wt% Cu/t-ZrO2 (DP) at 523 K.  The higher activity of the m-ZrO2 supported 

catalysts was accompanied by a substantially greater selectivity to methanol.  It is also 

noted that introduction of Cu by deposition-precipitation yielded higher conversions and 

selectivities than could be achieved by introducing Cu by incipient-wetness 

impregnation, regardless of the phase of ZrO2. 

Effects of Cu Loading on the Properties of Cu/m-ZrO2  

 Table 4 presents the copper surface areas, copper dispersion, and the surface 

concentration of exchangeable hydrogen measured for Cu/m-ZrO2 containing 1.2-20 wt% 

Cu.  Since deposition-precipitation produces a higher dispersion of Cu, these catalysts 
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were prepared using this technique.  Although increasing the copper loading decreases 

the Cu dispersion, the total Cu surface area increases up to 10 wt% before decreasing for 

20 wt% Cu/m-ZrO2 (DP).  The increase in copper loading also results in a monotonic 

decrease in the concentration of exchangeable hydrogen.  This trend is attributable to the 

adsorption of Cu at surface hydroxyl sites upon deposition [54-57].  Such exchange 

predominates at lower copper surface densities and facilitates higher levels of dispersion.  

With increasing copper weight loadings, the relative amount of Cu accommodated at the 

hydroxyl sites decreases as illustrated by a decline in the incremental ratio of 

consumption of hydroxyl groups to copper deposited (last column in Table 4). 

 The H2-TPR profile of each catalyst is given in Figure 8.  With larger copper 

loadings, a greater portion of copper present is reduced at progressively higher 

temperatures.  The most notable distinction occurs upon increasing the loading from 10 to 

20 wt%, for which case the peak at ∼ 553 K increases significantly and a new large peak 

appears at ∼ 598 K.  Zhou et al. [45] observed a similar high-temperature peak during the 

reduction of CuO/ZrO2 at higher Cu weight loadings and ascribed it to the reduction of 

bulk CuO.  The occurrence of this new peak coincides with the decrease in Cu surface 

area and a corresponding decrease in Cu dispersion (see Table 4).  For each sample, the 

amount of H2 consumed was approximately equivalent to the value required for complete 

reduction of CuO, indicating that the reduction conditions utilized prior to reaction were 

sufficient to reduce of the copper to metallic Cu.      

 A comparison of the CO-TPD spectra for 1.2 wt% Cu/m-ZrO2 (DP) and 10 wt% 

Cu/m-ZrO2 (DP) are presented in Figure 9.  Both samples exhibited similar desorption 

spectra for CO and CO2 with the exception of a small CO peak detected at ∼ 353 K on 10 
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wt% Cu/m-ZrO2 (DP).  This peak was also observed in the TPD spectra of other high 

weight-loaded samples.  While He et al. [58] have assigned a low-temperature CO-TPD 

peak for m-ZrO2 to weakly adsorbed CO, the absence of this peak in the spectra for the 

low-weight loaded samples reported here suggests that this peak is due to weakly bound 

CO adsorbed on large Cu crystallites present at higher copper loadings.  The low-

temperature shoulder at ∼ 623 K on the CO peak observed for 10 wt% Cu/m-ZrO2 (DP) 

became more prominent with higher weight loading, but was never fully resolved.  The 

calculated desorption quantities and related peak maxima temperatures for all of the m-

ZrO2 (DP) samples are presented in Table 5.  Each sample exhibits a CO peak at 618-628 

K and a broad pair of CO2 desorption peaks at 583-593 K and 648-673 K.  This indicates 

that the presence of copper in the range of 1.2-20 wt% does not significantly alter the 

distribution of binding strengths for CO adsorbed on ZrO2.  The total adsorption capacity, 

though, decreases slightly from 1.2 wt% to 10 wt% Cu before a more precipitous decline 

is observed for 20 wt% Cu/m-ZrO2 (DP). 

Effect of Cu Loading on the Activity and Selectivity of Cu/m-ZrO2  

The CO conversion to methanol increased as the temperature was raised from 

473-523 K with a parallel decrease in selectivity due to increased methane production for 

each catalyst, as was observed with the lower weight loaded materials.  Figure 10 shows 

the effects of Cu loading on the activity and selectivity of Cu/m-ZrO2 (DP) for methanol 

synthesis at 523 K.  The activity of Cu/m-ZrO2 (DP) passes through a maximum at 10 

wt% Cu with increasing Cu loading.  This trend is closely associated with the changes in 

copper surface area for each sample (see Table 4) as discussed below.  It should also be 

noted that the decrease in catalytic turnover of 20 wt% Cu/m-ZrO2 (DP) coincides with a 
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significant decrease in the concentration of adsorbed CO (see Table 5).  Selectivities for 

each catalyst are quite similar and show only a slight decrease with increasing copper 

loadings. 

 

Discussion 

 The results of this study demonstrate that both Cu/t-ZrO2 and Cu/m-ZrO2 

catalysts are active for CO hydrogenation to methanol.  Since the surface area of the 

dispersed Cu influences the methanol synthesis activity, as well as the phase of ZrO2, it is 

useful to examine a plot of methanol productivity as a function of Cu surface area for 

each catalyst.  Figure 11 shows very clearly the strong effect of ZrO2 phase on activity 

for a given copper surface area.  This plot also demonstrates that for a given phase of 

ZrO2, the activity increases linearly with increasing Cu surface area, independent of 

whether Cu is introduced by incipient-wetness impregnation or deposition-precipitation.  

These observations support the idea previously proposed by Bell and coworkers [9, 11] 

that methanol synthesis on Cu/ZrO2 involves both components, and not just Cu.  As noted 

in the Introduction, previous mechanistic investigations have shown that ZrO2 adsorbs 

CO, whereas Cu adsorbs H2 dissociatively and supplies H atoms to ZrO2 via spillover [9, 

11, 13].  Methanol is formed via the hydrogenation of the adsorbed CO by H atoms 

migrating from the dispersed Cu particles.  Implicit in this interpretation is the 

assumption that the dispersed Cu is inactive for methanol synthesis from CO/H2.  This 

assumption is strongly supported by the observation that the (100) surface of Cu exhibits 

no measurable activity for methanol synthesis from CO and H2 [59].  Other authors have 
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proposed a similar bifunctional mechanism for methanol synthesis from CO and H2 on 

Cu/ZnO catalysts [60, 61]. 

 Comparison of the methanol synthesis activity of the Cu/ZrO2 catalysts prepared 

in this study with that of a typical industrial catalyst, Cu/ZnO/Al2O3, is not easily done, 

since the performance of the latter class of catalysts depends on the manner of 

preparation.  A further complication is that reports of Cu/ZnO/Al2O3 performance often 

differ in the reaction conditions used (i.e., feed composition, total pressure, reaction 

temperature), but do not provide sufficient data to enable adjustment of the reported rates 

and selectivity to a common set of reaction conditions.  It is possible, however, to 

compare the results of the catalysts reported here with the performance of a 

Cu/ZnO/Al2O3 catalyst reported by Lee et al. [12], since the reaction conditions used for 

catalyst evaluation were identical to those employed here.  These authors prepared a 

catalyst with the composition CuO/ZnO/Al2O3 = 49/36/15 [wt%], which had a BET 

surface area of 35 m2/g and a Cu surface area of 5.3 m2/g.  The methanol synthesis 

activity of this catalyst operating with a feed of H2/CO = 3/1 at 523 K and 30 bar was 0.4 

µmol/g·s.  This activity is essentially identical to that reported here for 1.2 wt% Cu/t-

ZrO2 (DP).  For the same reaction conditions, the activity of Cu/m-ZrO2 ranges from 1.1-

3.0 µmol/g·s, depending on the surface area of the dispersed Cu (0.8-2.7 m2/g). 

The difference in the catalytic activities of Cu/t-ZrO2 and Cu/m-ZrO2 parallels the 

differences in the CO adsorption capacities for these materials at reaction temperature.  

After CO adsorption for 20 min, the CO adsorption capacity of Cu/m-ZrO2 is 

approximately 20 times higher at 523 K than that for similarly prepared Cu/t-ZrO2 (see 

Table 3).  This would suggest that at least a part of the reason for the higher activity of 
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Cu/m-ZrO2, for a given Cu surface area, is the higher concentration of CO and other 

carbon-containing intermediates on the surface of ZrO2.  A similar observation has been 

reported by Maruya et al. [20], who noted that the rate of isobutene synthesis from CO 

and H2 on ZrO2 increased with increasing volume fraction of monoclinic ZrO2 as did the 

concentrations of formate and methoxide species.  While an increase in the surface 

concentration of carbon-containing species is expected to contribute to the higher rate of 

methanol synthesis over Cu/m-ZrO2, it is not clear whether the phase of ZrO2 also affects 

the rate coefficients for the elementary processes involved in the hydrogenation of CO.  

This subject is addressed in the second paper in this series [62].  The balance of the 

present paper addresses the issue of why the adsorption of CO occurs more rapidly and to 

a greater extent on Cu/m-ZrO2 than Cu/t-ZrO2.  The role of Cu surface area on the rate of 

methanol synthesis is also discussed 

Previous studies have shown that formate species are generated through an 

interaction of CO with hydroxyl groups present on ZrO2 [9, 11, 54-57].  The infrared 

spectra presented in Figure 6 are consistent with this picture, showing that at reaction 

temperatures CO adsorbs exclusively as bidentate formate species.  Although a larger 

concentration of hydroxyl groups (exchangeable hydrogen) was measured on Cu/m-ZrO2 

(∼10.8 µmol/m2) than on Cu/t-ZrO2 (6.3-7.9 µmol/m2), the difference in hydroxyl group 

concentration alone is insufficient to account for the higher strength of adsorption and 

approximately 20 times larger concentration of adsorbed CO on Cu/m-ZrO2.  In addition, 

it is unlikely that the hydroxyl groups present on the surface of ZrO2 are sufficiently 

acidic to form formate species via direct interaction with CO.  This conclusion is 

supported by theoretical studies which show that the hydroxyl groups on the surface of 
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ZrO2 are weaker than the Brønsted acid sites of chabazite or the silanol groups on silica 

[40].  Therefore, it is more likely that the differences in CO adsorption capacity and 

strength on the two polymorphs of ZrO2 are due to differences in the local environment 

of the hydroxyl groups. 

In a series of studies on methanol synthesis over ZrO2, Ekerdt and co-workers 

[63, 64] hypothesized that oxygen vacancies are the active site for CO hydrogenation.  

The titration of surface anion vacancies with SO3 demonstrated that predominantly 

monoclinic ZrO2 exhibited a significantly greater number of such sites relative to t-ZrO2 

or even c-ZrO2 materials doped with yittria.  This observation is consistent with the 

detection of Zr3+ centers on the surface of m-ZrO2 by EPR [51, 65].  Frost [66] has also 

proposed that anionic defects are the active centers for CO hydrogenation to methanol on 

ZnO, ZrO2, and ThO2 containing either Cu or other metals. 

The proposed scheme for the interaction of CO with a surface oxygen vacancy 

(adopted from Ref. [63]) is illustrated in Figure 12.  The vacancy allows a CO molecule 

to interact with the exposed Zr cations.  Formate species are then generated by the 

reaction of the adsorbed CO with a neighboring hydroxyl group.  Based on this picture, 

the difference in the adsorptive capacity of CO on Cu/t-ZrO2 and Cu/m-ZrO2 is expected 

to be a function of the relative concentration of anionic vacancies present on the surface 

of the two polymorphs of ZrO2.  While experimental studies have shown that anionic 

defects are formed in the bulk and on the surface of ZrO2, the relative concentrations of 

such defects on the surface of t- and m-ZrO2 have not been reported.  Embedded cluster 

calculations give a value of 8.8 eV for the energy required to remove a free O atom from 

the bulk of t-ZrO2 [67], whereas plane-wave calculations give a value of 8.88-8.90 eV  
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for the same process occurring in m-ZrO2 [68].  The energy required to remove an O 

atom from the low-energy (101) surface of t-ZrO2 is estimated to be 2.7 eV) [41] and -3.4 

eV [67], but unfortunately, a similar estimate has not been made for m-ZrO2.  

Consequently, it is not possible to draw a definitive conclusion about the relative ease of 

forming anionic defects on m- versus t-ZrO2 based on theoretical analyses.  What is 

known, though, is that the Lewis acid center produced by the formation of an anionic 

vacancy strengthens the acidity of an adjacent hydroxyl group [69].  Thus, it can be 

concluded that the formation of O atom vacancies at the surface of ZrO2 facilitates the 

reaction of CO with OH groups adjacent to such vacancies and leads to the formation of 

adsorbed formate species. 

Further evidence for the proximity of CO adsorption sites to hydroxyl groups on 

the surface of ZrO2 can be drawn from a consideration of the TPD spectra shown in 

Figures 5.  For both forms of zirconia, adsorbed CO desorbs as both CO and CO2.  As 

shown in Figure 13, three possible decomposition pathways can be envisoned [52, 70, 71] 

– one leading to the release of CO and the other two leading to the release of CO2.  The 

first pathway involves desorption of CO accompanied by rengeneration of a hydroxyl 

group, whereas the second and third pathways involve reaction of the adsorbed formate 

group with an adjacent hydroxyl group to produce CO2 accompanied by either a change 

in the coordination of the hydroxyl group (pathway 2) or dehydroxylation of the oxide 

(pathway 3).  Reaction pathways 2 and 3 both release H2.  While some authors [61, 72-

74] have ascribed the evolution of CO2 during TPD of adsorbed CO to the decomposition 

of formate groups on Cu, the presence of a CO2 desorption peak at the same temperature 
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whether or not Cu is present [17] and the absence of any evidence by infrared 

spectroscopy for formate species on Cu precludes this interpretation. 

The formation of methanol requires a supply of hydrogen atoms for the 

hydrogenation of formate groups adsorbed on ZrO2.  Since the heat of reaction to form 

Zr-H and Zr-OH is only -4.1 kcal/mol on defect-free t-ZrO2 [41], this process is unlikely 

to provide an adequate supply of atomic hydrogen.  H/D exchange studies by Jung and 

Bell [13] have shown that the rate of H/D exchange occurs much more rapidly on m- than 

on t-ZrO2.  Since the latter oxide is believed to have a higher defect density, this leads to 

the conclusion that anion defects facilitate the dissociation of H2.  However, even higher 

rates of H/D exchange are achieved when Cu is deposited on the surface of either ZrO2 

polymorph [11, 13].  Figure 10 shows that for Cu dispersed on both t-ZrO2 and m-ZrO2 

the rate of methanol formation increases approximately linearly with the surface area of 

the dispersed Cu.  This trend is ascribed to the ability of Cu to adsorb H2 dissociatively 

and provide H atoms to ZrO2 via spillover.  Part II of this series [62] presents a detailed 

transient-response study, aiming at a mechanistic understanding of the intermediates 

involved in the reaction and their relationship to the mechanism in methanol synthesis.  

The effect of exposed Cu atoms on the dynamics of CO hydrogenation is also 

investigated. 

 

Conclusions 

 The activity and selectivity of Cu/ZrO2 for the synthesis of methanol via CO 

hydrogenation is influenced strongly by the phase of ZrO2.  For a given Cu weight 

loading, Cu/m-ZrO2 has an eightfold higher activity for methanol synthesis than Cu/t-
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ZrO2.  The selectivity to methanol is also higher on Cu/m-ZrO2.  For a given phase of 

ZrO2, the methanol synthesis activity increases linearly with increasing Cu surface area.  

These observations confirm the bifunctional nature of methanol synthesis over Cu/ZrO2   

catalysts.  The higher methanol synthesis activity of Cu/m-ZrO2 correlates strongly with 

the higher capacity of this catalyst to adsorb CO as HCOO-Zr species, which are 

precursors to methanol.  It is hypothesized that the higher CO adsorption capacity of m-

ZrO2 is related to a higher concentration of surface anionic vacancies.  Such vacancies 

expose coordinately unsaturated Zr cations, and enhance the Brønsted acidity of adjacent 

Zr-OH groups, which otherwise are only weakly acidic.  Thus, the creation of accessible 

Lewis acid sites in combination with moderately acidic Brønsted acid sites facilitates the 

adsorption of CO as HCOO-Zr species.  In the second part of this study we show that the 

latter species participate directly in the synthesis of methanol, and that the activity of 

Cu/ZrO2 catalysts is related to the surface concentration of these species. 
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Table 1.  Preparation calcination temperature and textural characteristics for each ZrO2 

material. 

Sample 
Calcination 
Temperature  

(K) 

Surface Area  
(m2/g cat.) 

Avg. Pore Size  
(nm) 

ZrO2 (HpH) 1053 150 4.2 

ZrO2 (LpH) 738 143 4.1 
 
 
 
Table 2.  Effect of ZrO2 phase on the dispersion of Cu and exchangeable H for 1.2 wt% 
Cu/ZrO2 catalysts. 
 

Sample Cu Surface Area 
(m2/g cat.) 

Cu Dispersion 
(%) 

Exchangable H 
(µmol/m2) 

1.2 wt% Cu/t-ZrO2 (I) 0.93 11.9 7.9 

1.2 wt% Cu/t-ZrO2 (DP) 1.44 18.5 6.3 

1.2 wt% Cu/m-ZrO2 (I) 0.58 7.4 10.7 

1.2 wt% Cu/m-ZrO2 (DP) 0.87 11.1 10.9 
 
 
Table 3.  Effect of ZrO2 phase on the adsorption capacity and binding strength of CO at 
523 K. 
 

Sample 
CO 

desorbed 
(µmol/m2) 

Peak 
Max. T 

(K) 

CO2 
desorbed 

(µmol/m2) 

Peak 
Maxima 

T (K) 

Total COx 
desorbed 

(µmol/m2) 

1.2 wt% Cu/t-ZrO2 (I) 0.01 440 0.03 425, 605 0.04 

1.2 wt% Cu/t-ZrO2 (DP) 0.01 440 0.05 435, 595 0.06 

1.2 wt% Cu/m-ZrO2 (I) 0.26 635 0.61 585, 640 0.87 

1.2 wt% Cu/m-ZrO2 (DP) 0.51 620 0.78 590, 675 1.29 
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Table 4.  Effect of increased Cu loading on Cu/m-ZrO2 on the dispersion of Cu and 
exchangeable H. 
 

Sample Cu Surface 
Area (m2/g cat.) 

Cu Dispersion 
(%) 

Exchangable 
H (µmol/m2) 

-∆OH/   
∆Cu (%) 

1.2 wt% Cu/m-ZrO2 (DP) 0.87 11.1 10.9 - 

6.4 wt% Cu/m-ZrO2 (DP) 2.46 5.9 8.2 47 

10.0 wt% Cu/m-ZrO2 (DP) 2.70 4.2 7.4 33 

20.0 wt% Cu/m-ZrO2 (DP) 1.88 1.4 6.3 10 
 
 
 
Table 5.  Effect of increased Cu loading on m-ZrO2 on the adsorption capacity and 
binding strength of CO at 523 K. 
 

Sample 

CO 
desorption 

at Low 
T/High T 
(µmol/m2) 

Peak 
Max. 
T (K) 

CO2 
desorption 
(µmol/m2) 

Peak 
Maxima 

T (K) 

COx 
desorbed 

(µmol/m2) 

1.2 wt% Cu/m-ZrO2 (DP) 0/0.51      620 0.78 590, 675 1.29 

6.4 wt% Cu/m-ZrO2 (DP) 0.02/0.39 630 0.77 595, 660 1.18 

10.0 wt% Cu/m-ZrO2 (DP) 0.02/0.42 620 0.71 585, 655 1.15 

20.0 wt% Cu/m-ZrO2 (DP) 0.02/0.21 630 0.48 585, 650 0.71 
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Figure Captions 
 
Fig. 1  XRD patters for ZrO2 (HpH) and ZrO2 (LpH). 
 
Fig. 2  Raman spectra for ZrO2 (HpH) and ZrO2 (LpH) taken at room temperature. 
 
Fig. 3  Infrared spectra of the hydroxyl group stretching region for t-ZrO2 and m-ZrO2. 
 
Fig. 4  H2-TPR spectra for 1.2 wt% Cu deposited on t-ZrO2 and m-ZrO2 by deposition-
precipitation (DP) and by incipient-wetness impregnation (I).  Heating rate = 20 K/min; 
2% H2/He flow rate = 60 cm3/min. 
 
Fig. 5  TPD spectra of (a) CO2 and (b) CO following CO adsorption on 1.2 wt% Cu/t-
ZrO2(DP) and 1.2wt% Cu/m-ZrO2 (DP).  Heating rate = 20 K/min; He flow rate = 60 
cm3/min. 
 
Fig. 6  Infrared spectra of 1.2 wt% Cu/t-ZrO2(DP) and 1.2wt% Cu/m-ZrO2 (DP) at 523 K 
after switching from 0.50 MPa He to 0.05 MPA CO and 0.45 MPa He flowing at a total 
flow rate of 60 cm3/min.  Spectra referenced to 1.2 wt% Cu/t-ZrO2(DP) and 1.2wt% 
Cu/m-ZrO2 (DP) obtained in 0.50 MPa He flowing at 523 K. 
 
Fig. 7.  Effect of temperature on the conversion of CO to methanol (a) and the methanol 
selectivity (b) during CO hydrogenation over 1.2 wt% Cu/t-ZrO2 catalysts: catalyst mass 
= 0.15 g; P = 3.0 MPa; H2/CO = 3; total flow rate = 60 cm3/min. 
 
Fig. 8  H2-TPR spectra for each 1.2 wt% Cu/m-ZrO2 (DP) catalyst.  Heating rate = 20 
K/min; 2% H2/He flow rate = 60 cm3/min.  (a) 1.2 wt % Cu, (b) 6.4 wt% Cu. (c) 10 wt% 
Cu, (d) 20 wt % Cu. 
 
Fig. 9  TPD spectra of (a) CO2 and (b) CO following CO adsorption on 1.2 wt% Cu/m-
ZrO2 (DP) and 10.0 wt% Cu/m-ZrO2 (DP).  Heating rate = 20 K/min; He flow rate = 60 
cm3/min. 
 
Fig. 10 Effects of Cu loading on the conversion of CO to methanol (a) and the methanol 
selectivity (b) during CO hydrogenation over Cu/m-ZrO2: catalyst mass = 0.15 g; T = 523 
K; P = 3.0 MPa; H2/CO = 3; total flow rate = 60 cm3/min. 
 
Fig. 11 Methanol productivity versus Cu surface are for each Cu/ZrO2 catalyst (t-ZrO2, 
diamonds; m-ZrO2 circles; impregnation, open circles; deposition-precipitation, closed 
circles): catalyst mass = 0.15 g; T = 523 K; P = 3.0 MPa; H2/CO = 3; total flow rate = 60 
cm3/min. 
 
Fig. 12 Proposed mechanism for the formation of formate species at the site of an oxygen 
vacancy (adopted from Ref. 63). 
 
Fig. 13 Proposed pathways for formate decomposition on ZrO2. 
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Figure 1. XRD patterns for ZrO2 (HpH) and ZrO2 (LpH).  
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Figure 2. Raman spectra for ZrO2 (HpH) and ZrO2 (LpH) at room 
temperature. 
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Figure 3. Infrared spectra of the hydroxyl group stretching region 
for t-ZrO2 and m-ZrO2 taken at room temperature. 
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Figure 5. TPD spectra of (a) CO2 and (b) CO following CO adsorption on 1.2 wt% 
Cu/t-ZrO2(DP) and 1.2wt% Cu/m-ZrO2 (DP).  Heating rate = 20 K/min; He 
flow rate = 60 cm3/min. 
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Figure 6. Infrared spectra of 1.2 wt% Cu/t-ZrO2 (DP) and 1.2 wt% Cu/m-ZrO2 (DP) 

at 523 K after switching feed from 0.50 MPa He to 0.05 MPa CO and 0.45 
MPa He flowing at a total rate of 60 cm3/min.  Spectra referenced to 1.2 
wt% Cu/t-ZrO2 (DP) and 1.2 wt% Cu/m-ZrO2 (DP) under 0.50 MPa He 
flowing at 523 K. 
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Figure 7. Effect of temperature on the conversion of CO to methanol (a) and the 
methanol selectivity (b) during CO hydrogenation over 1.2 wt% Cu/t-ZrO2 
catalysts: catalyst mass = 0.15 g; P = 3.0 MPa; H2/CO = 3; total flow rate = 
60 cm3/min. 
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Figure 8. H2-TPR spectra for each Cu/m-ZrO2 (DP) catalyst.  
Heating rate = 20 K/min; 2% H2/He flow rate = 60 
cm3/min. (a) 1.2 wt % Cu, (b) 6.4 wt% Cu. (c) 10 wt% 
Cu, (d) 20 wt % Cu. 
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Figure 9. TPD spectra of (a) CO2 and (b) CO following CO adsorption on 1.2 wt% 
Cu/m-ZrO2 (DP) and 10.0 wt% Cu/m-ZrO2 (DP).  Heating rate = 20 K/min; 
He flow rate = 60 cm3/min. 
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Figure 10. Effects of Cu loading on the conversion of CO to methanol (a) and the 
methanol selectivity (b) during CO hydrogenation over Cu/m-ZrO2: catalyst 
mass = 0.15 g; T = 523 K; P = 3.0 MPa; H2/CO = 3; total flow rate = 60 
cm3/min. 
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Figure 11. Methanol productivity vs. Cu surface area for each 
Cu/ZrO2 catalyst (t-ZrO2, diamonds; m-ZrO2, circles; 
impregnation, open symbols; deposition-precipitation, 
dark circles): catalyst mass = 0.15 g; T = 523 K; P = 3.0 
MPa; H2/CO = 3; total flow rate = 60 cm3/min. 
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Figure 12. Proposed mechanism for the formation of formate species at the site of an 
oxygen vacancy (adopted from Ref. 63). 
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Figure 13. Proposed pathways for formate decomposition on 
ZrO2. 

 
 
 
 
 
 
 
 




